Core Implementation
Basic Trie
Implementation Variations
1. Compressed Trie (Radix Tree)
2. Ternary Search Tree
Time Complexities
Operation | Standard Trie | Compressed Trie | TST |
---|---|---|---|
Insert | O(m) | O(m) | O(m) |
Search | O(m) | O(m) | O(m) |
Prefix Search | O(p) | O(p) | O(p) |
Delete | O(m) | O(m) | O(m) |
Space Complexity | O(ALPHABET_SIZE * m * n) | O(n) | O(n) |
Space Complexities
Implementation | Space Complexity | Additional Notes |
---|---|---|
Standard Trie | O(ALPHABET_SIZE * m * n) | More space for faster lookups |
Compressed Trie | O(n) | Space efficient but slower updates |
TST | O(n) | Best for sparse datasets |
Common Data Structure Patterns
-
Autocomplete Systems
- Prefix matching
- Top-k suggestions
- Fuzzy search
-
Spell Checkers
- Word validation
- Suggestion generation
- Edit distance
-
String Matching
- Pattern matching
- Wildcard matching
- Regex operations
-
IP Routing Tables
- Longest prefix matching
- Route aggregation
- Next hop lookup
-
Dictionary Operations
- Word insertion
- Deletion
- Lookup
-
Phone Directory
- Contact search
- Partial matching
- Prefix based search
Edge Cases to Consider
- Empty String
- Single Character
- Duplicate Words
Optimization Techniques
- Array-based Children
- Bit Vector Implementation
- Path Compression
Memory Management
- Memory Pool
- Lazy Loading
Performance Considerations
- Batch Operations
- Prefix Caching
Common Pitfalls
- Memory Leak in Deletion
- Incorrect Prefix Counting
- Inefficient Space Usage