All Data Structures
Matrix
Matrix
Core Implementation
Basic Matrix Implementation
Implementation Variations
1. Sparse Matrix
2. Numpy-style Matrix
Time Complexities
Operation | Dense Matrix | Sparse Matrix | NumPy Matrix |
---|---|---|---|
Access | O(1) | O(1) | O(1) |
Addition | O(mn) | O(k)* | O(mn) |
Multiplication | O(mnp)** | O(kp)*** | O(mnp) |
Transpose | O(mn) | O(k) | O(1)**** |
* k is number of non-zero elements ** For m×n and n×p matrices *** k is number of non-zero elements in first matrix **** View only, actual transpose is O(mn)
Space Complexities
Implementation | Space Complexity | Additional Notes |
---|---|---|
Dense Matrix | O(mn) | All elements stored |
Sparse Matrix | O(k) | Only non-zero elements |
NumPy Matrix | O(mn) | Contiguous memory allocation |
Common Matrix Patterns
-
Matrix Traversal
- Row-wise
- Column-wise
- Diagonal
- Spiral
-
Matrix Operations
- Addition/Subtraction
- Multiplication
- Transpose
- Inverse
-
Matrix Transformations
- Rotation
- Reflection
- Scaling
- Translation
-
Matrix Search
- Binary search
- Row-column search
- Sorted matrix search
-
Matrix Decomposition
- LU decomposition
- QR decomposition
- Eigenvalues
- SVD
-
Special Matrices
- Identity matrix
- Triangular matrix
- Diagonal matrix
- Symmetric matrix
Edge Cases to Consider
- Empty Matrix
- Single Element
- Invalid Dimensions
Optimization Techniques
- Block Matrix Multiplication
- Strassen’s Algorithm
Memory Management
- Memory-Efficient Storage
- Memory Pool
Performance Considerations
- Cache-Friendly Access
- Parallel Processing
Common Pitfalls
- Shallow Copy
- Dimension Mismatch
- Memory Efficiency